Jumlah Kelas
K = 1+ 3,33 log N
= 1 + 3,33 log 50
= 6,65 -> 7
R = 74 – 33
= 41
Interval Kelas
I = R⁄K
= 41⁄7
= 5,8 -> 6
Mean
x ̅= (Σfi.xi)/n
=2549/50
= 50,98
Median
Letak Median
K=((n+1))/2
=((50+1))/2
= 25,5
Md=B1+ ((N⁄2)-fk)/fm .i
=50,5+ ((50⁄2)-19)/15 .6
= 52,9
Modus
Mo =B1+ d1/((d1+d2)) .i
=50,5+ 4/((4+5)) .6
= 53,167
Standar Deviasi
S^2= (N Σ fi xi^2- 〖(Σ fi xi)〗^2)/(N (N-1))
= (50. 142572,5- 〖(2549)〗^2)/(50 .49)
=257,642
S = √(257,642 )
=16,051
Kecondongan (Qurtois)
sk=((x-Mo))/s
=((50,98-53,167))/16,05
= -0,136 (codong ke kiri)
Keruncingan (skewness)
α^4=(1⁄n.Σ(xi-x)^4)/s^4
=(1⁄50.(292705,5119))/((16,051)⁴)
=0,0881 (platikurtik)
Letak persentil
p_k= k/100 x n
p_25= 25/100 x 50
= 12, 5
p_k=B1+ (((k.n)⁄100-fk) )/f x i
p_25=44,5+ ((12,5-8) )/11 x 6
= 46,954
Letak persentil
p_50= 50/100 x 50
= 25
p_50=50,5+ ((25-19) )/15 x 6
= 52,9
Letak persentil
p_75= 75/100 x 50
= 37,5
p_75=56,5+ ((37,5-34) )/10 x 6
= 58,6
Letak quartil
Q_k= k/4 x n
Q_1= 1/4 x 50
= 12,5
Q_k=B1+ (((k.n)⁄4-fk) )/f x i
Q_1=44,5+ ((12,5-8) )/11 x 6
= 46,9545
Letak desil
D_k= k/10 x n
D_3= 3/10 x 50
= 15
D_k=B1+ (((k.n)⁄10-fk) )/f x i
D_3=B1+ ((15-8))/11 x 6
= 48,3181
Modul 4
Perhitungan regresi
b=(n.ΣXiYi-(ΣXi)(ΣYi))/(n.ΣXi²-(ΣXi)²)
b=(12 x 102324-1087 x 1114)/(12 x 100313-(1087)^2 )
= 0,76
a=y ̅-bx ̅
a=92,83-(0,76)x (90,583)
= 23,986
y=a+bx
y=23,986+0,76 x
Perhitungan jika X (87)
y=a+bx
y=23,986+0,76 x
y=23,986+0,76 (87)
= 90,106
Perhitungan korelasi
r=(n.ΣXiYi-(ΣXi)(ΣYi))/√([n.ΣXi^2-(ΣXi)^2 ] x [n.Σyi^2-(ΣYi)^2 ] )
r=(12 x 102324-1087 x 1114)/√([12 x 100313-(1087)^2 ]x [12 x 105316-(1114)²)
= 0,754
r² = 0,5685
Analisa Koefisien Determinasi
Koefisien korelasi sebesar 0,754 jadi adanya hubungan antara pendapatan (x) dan konsumsi (y) sedang karena r² = 0,5685 maka dapat dikatakan bahwa 56,86 % diantara keragaman dalam nilai-nilai y dapat dijelaskan oleh hubungan liniernya dengan X
Modul 2
Studi kasus 1
µ = 24 menit
σ = 3,8 menit
x = 30 menit
z= (X- µ)/σ
= (30-24)/3,8
= 1,58
P(X>30) = P(z>1,57)
= 1-0,9429
= 0,0571
µ = 24 menit
σ = 3,8 menit
X = 15
z= (X- µ)/σ
= (15-24)/3,8
= -2,37
P (x = 15) = P (Z = -2,37)
= 0,0089
X_1=15
X_2=25
µ = 24
σ = 3,8
Z_1=(15-24)/3,8
= -2,37
Z_2=(25-24)/3,8
= 0,26
P (15 < X < 25) = P (-2,37 < Z < 0,26)
= P (Z < 0,26) – P (Z < -2,37)
= 0,5937
µ = 24
σ = 3,8
Z < -1,04 = 0,15
X = σZ + µ
= 3,8 (-1,04) + 24
= 20,048
Studi Kasus 2
µ = 150 x 0,1
= 15
X = 5
P (5 , 15) = (e^(-15) 〖15〗^5)/5!
= 0,0019357
Studi kasus 3
n = 200
µ = 35
σ = 5
X_1=40
X_2=45
Z_1=(40-35)/5
= 1
Z_2=(45-35)/5
= 2
P (40 < X < 45) = P (1 < Z < 2)
= P ( Z < 2) – P (Z < 1)
= 0,9772 – 0,8413
= 0,1359
200 x 0,1359
= 27,18
Tidak ada komentar:
Posting Komentar